Flytende gjennomsnitt Dette eksemplet lærer deg hvordan du beregner det bevegelige gjennomsnittet av en tidsserie i Excel. Et glidende gjennomsnitt brukes til å utjevne uregelmessigheter (topper og daler) for enkelt å gjenkjenne trender. 1. Først, ta en titt på vår tidsserie. 2. På Data-fanen klikker du Dataanalyse. Merk: kan ikke finne dataanalyseknappen Klikk her for å laste inn add-in for Analysis ToolPak. 3. Velg Flytt gjennomsnitt og klikk OK. 4. Klikk i feltet Inngangsområde og velg området B2: M2. 5. Klikk i intervallboksen og skriv inn 6. 6. Klikk i feltet Utmatingsområde og velg celle B3. 8. Skriv en graf av disse verdiene. Forklaring: fordi vi angir intervallet til 6, er glidende gjennomsnitt gjennomsnittet for de forrige 5 datapunktene og det nåværende datapunktet. Som et resultat blir tinder og daler utjevnet. Grafen viser en økende trend. Excel kan ikke beregne det bevegelige gjennomsnittet for de første 5 datapunktene fordi det ikke er nok tidligere datapunkter. 9. Gjenta trinn 2 til 8 for intervall 2 og intervall 4. Konklusjon: Jo større intervallet jo flere tinder og daler utjevnes. Jo mindre intervallet, desto nærmere beveger gjennomsnittet seg til de faktiske datapunktene. Gjennomgang av gjennomsnittlig prognoseinnledning. Som du kanskje tror vi ser på noen av de mest primitive tilnærmingene til prognoser. Men forhåpentligvis er disse minst en verdig innføring i noen av databehandlingsproblemene knyttet til implementering av prognoser i regneark. I denne veinen vil vi fortsette med å starte i begynnelsen og begynne å jobbe med Moving Average prognoser. Flytte gjennomsnittlige prognoser. Alle er kjent med å flytte gjennomsnittlige prognoser, uansett om de tror de er. Alle studenter gjør dem hele tiden. Tenk på testresultatene dine i et kurs der du skal ha fire tester i løpet av semesteret. La oss anta at du fikk en 85 på din første test. Hva vil du forutsi for din andre testscore Hva tror du at læreren din ville forutse din neste testscore Hva tror du dine venner kan forutsi for neste testresultat Hva tror du at foreldrene dine kan forutsi for neste testresultat uansett alt det du kan gjøre med dine venner og foreldre, de og din lærer er veldig sannsynlig å forvente deg å få noe i området av 85 du nettopp har fått. Vel, nå kan vi anta at til tross for selvforfremmelse til vennene dine, overestimerer du deg selv og figurerer du kan studere mindre for den andre testen, og så får du en 73. Nå er det alle de bekymrede og ubekymrede går til Forvent deg at du kommer på den tredje testen. Det er to svært sannsynlige tilnærminger for dem å utvikle et estimat, uansett om de vil dele det med deg. De kan si til seg selv, at denne fyren alltid blåser røyk om hans smarts. Hes kommer til å få en annen 73 hvis han er heldig. Kanskje foreldrene vil prøve å være mer støttende og si, quote, så langt har du fått en 85 og en 73, så kanskje du burde finne på å få en (85 73) 2 79. Jeg vet ikke, kanskje hvis du gjorde mindre fest og werent vevet vasselen over alt, og hvis du begynte å gjøre mye mer å studere, kan du få en høyere score. quot Begge disse estimatene flytter faktisk gjennomsnittlige prognoser. Den første bruker bare din siste poengsum for å prognose din fremtidige ytelse. Dette kalles en flytende gjennomsnittlig prognose ved hjelp av en periode med data. Den andre er også en flytende gjennomsnittlig prognose, men bruker to perioder med data. La oss anta at alle disse menneskene bråser på ditt store sinn, har slags pisset deg av og du bestemmer deg for å gjøre det bra på den tredje testen av dine egne grunner og for å sette en høyere poengsum foran din quotalliesquot. Du tar testen og poengsummen din er faktisk en 89 Alle, inkludert deg selv, er imponert. Så nå har du den endelige testen av semesteret som kommer opp, og som vanlig føler du behovet for å få alle til å gjøre sine spådommer om hvordan du skal gjøre på den siste testen. Vel, forhåpentligvis ser du mønsteret. Nå, forhåpentligvis kan du se mønsteret. Hvilke tror du er den mest nøyaktige fløyten mens vi jobber. Nå går vi tilbake til vårt nye rengjøringsfirma som startes av din fremmedgjorte halv søster, kalt Whistle While We Work. Du har noen tidligere salgsdata som er representert av følgende del fra et regneark. Vi presenterer først dataene for en tre-års glidende gjennomsnittlig prognose. Oppføringen for celle C6 skal være Nå kan du kopiere denne celleformelen ned til de andre cellene C7 til C11. Legg merke til hvordan gjennomsnittet beveger seg over de nyeste historiske dataene, men bruker nøyaktig de tre siste perioder som er tilgjengelige for hver prediksjon. Du bør også legge merke til at vi ikke virkelig trenger å gjøre spådommene for de siste perioder for å utvikle vår siste prediksjon. Dette er definitivt forskjellig fra eksponentiell utjevningsmodell. Ive inkluderte quotpast predictionsquot fordi vi vil bruke dem på neste nettside for å måle prediksjonsgyldigheten. Nå vil jeg presentere de analoge resultatene for en to-års glidende gjennomsnittlig prognose. Oppføringen for celle C5 skal være Nå kan du kopiere denne celleformelen ned til de andre cellene C6 til C11. Legg merke til hvordan nå bare de to siste bitene av historiske data blir brukt for hver prediksjon. Igjen har jeg tatt med quotpast predictionsquot for illustrative formål og for senere bruk i prognose validering. Noen andre ting som er viktig å legge merke til. For en m-periode som beveger gjennomsnittlig prognose, brukes bare de nyeste dataverdiene for å gjøre prognosen. Ingenting annet er nødvendig. For en m-periode som beveger gjennomsnittlig prognose, legger du merke til at den første prediksjonen forekommer i periode m 1. Begge disse problemene vil være svært viktige når vi utvikler koden vår. Utvikle den bevegelige gjennomsnittsfunksjonen. Nå må vi utvikle koden for den bevegelige gjennomsnittlige prognosen som kan brukes mer fleksibelt. Koden følger. Legg merke til at inngangene er for antall perioder du vil bruke i prognosen og rekke historiske verdier. Du kan lagre den i hvilken arbeidsbok du vil ha. Funksjon MovingAverage (Historical, NumberOfPeriods) Som Single Deklarering og Initialisering av variabler Dim Item Som Variant Dim Counter Som Integer Dim Akkumulering Som Single Dim HistoricalSize Som Integer Initialiserende variabler Teller 1 Akkumulering 0 Bestemme størrelsen på Historical array HistoricalSize Historical. Count For Counter 1 To NumberOfPeriods Akkumulere riktig antall siste tidligere observerte verdier Akkumulasjonsakkumulering Historisk (HistoricalSize - NumberOfPeriods Counter) MovingAverage AkkumuleringsnummerOfPeriods Koden vil bli forklart i klassen. Du vil plassere funksjonen på regnearket slik at resultatet av beregningen vises der det skal like følgende. Beregning av glidende gjennomsnitt i Excel I denne korte opplæringen lærer du hvordan du raskt beregner et enkelt glidende gjennomsnitt i Excel, hvilke funksjoner å bruke til å flytte gjennomsnittet for de siste N dagene, ukene, månedene eller årene, og hvordan å legge til en glidende gjennomsnittlig trendlinje til et Excel-diagram. I et par nyere artikler har vi tatt en nærmere titt på beregningen av gjennomsnittet i Excel. Hvis du har fulgt bloggen din, vet du allerede hvordan du skal beregne et normalt gjennomsnitt og hvilke funksjoner som skal brukes for å finne vektet gjennomsnitt. I dagens veiledning drøfter vi to grunnleggende teknikker for å beregne glidende gjennomsnitt i Excel. Det som beveger seg i gjennomsnitt Generelt kan glidende gjennomsnitt (også referert til som rullende gjennomsnitt, løpende gjennomsnitt eller flytende gjennomsnitt) defineres som en rekke gjennomsnitt for forskjellige delsett av det samme datasettet. Det brukes ofte i statistikk, sesongjustert økonomisk og værprognosering for å forstå underliggende trender. I aksjehandel er glidende gjennomsnitt en indikator som viser gjennomsnittsverdien av en sikkerhet over en gitt tidsperiode. I næringslivet er det en vanlig praksis å beregne et flytende gjennomsnitt av salg for de siste 3 månedene for å bestemme den siste trenden. For eksempel kan det bevegelige gjennomsnittet på tre måneders temperatur beregnes ved å ta gjennomsnittet av temperaturer fra januar til mars, deretter gjennomsnittet av temperaturer fra februar til april, så fra mars til mai og så videre. Det eksisterer forskjellige typer bevegelige gjennomsnitt som enkle (også kjent som aritmetiske), eksponentielle, variable, trekantede og vektede. I denne opplæringen ser vi på det mest brukte enkle glidende gjennomsnittet. Beregning av enkelt bevegelige gjennomsnitt i Excel Totalt sett er det to måter å få et enkelt glidende gjennomsnitt på i Excel - ved hjelp av formler og trendlinjealternativer. De følgende eksemplene viser begge teknikker. Eksempel 1. Beregn glidende gjennomsnitt for en bestemt tidsperiode Et enkelt glidende gjennomsnitt kan beregnes på kort tid med AVERAGE-funksjonen. Anta at du har en liste over gjennomsnittlige månedlige temperaturer i kolonne B, og du vil finne et glidende gjennomsnitt i 3 måneder (som vist på bildet ovenfor). Skriv en vanlig AVERAGE-formel for de tre første verdiene, og skriv den inn i raden som svarer til 3-verdien fra toppen (celle C4 i dette eksemplet), og kopier deretter formelen ned til andre celler i kolonnen: Du kan fikse kolonne med en absolutt referanse (som B2) hvis du vil, men sørg for å bruke relative radreferanser (uten tegnet) slik at formelen justeres riktig for andre celler. Husk at et gjennomsnitt beregnes ved å legge opp verdier og deretter dividere summen av antall verdier som skal gjennomsnittes. Du kan bekrefte resultatet ved å bruke SUM-formelen: Eksempel 2. Få glidende gjennomsnitt for en de siste N dagene ukene måneder år i en kolonne Anta at du har en liste over data, f. eks salgstall eller aksjekurser, og du vil vite gjennomsnittet for de siste 3 månedene når som helst. For dette trenger du en formel som vil beregne gjennomsnittet så snart du angir en verdi for neste måned. Hva Excel-funksjonen er i stand til å gjøre dette Den gode gamle AVERAGE i kombinasjon med OFFSET og COUNT. AVERAGE (OFFSET (første celle. COUNT (hele rekkevidde) - N, 0, N, 1)) Hvor N er nummeret på de siste dagene ukene månedene år å inkludere i gjennomsnittet. Ikke sikker på hvordan du bruker denne bevegelige gjennomsnittlige formelen i Excel-regnearkene. Følgende eksempel vil gjøre tingene klarere. Forutsatt at verdiene til gjennomsnitt er i kolonne B som begynner i rad 2, vil formelen være som følger: Og nå kan vi prøve å forstå hva denne Excel-glidende gjennomsnittlige formel faktisk gjør. COUNT-funksjonen COUNT (B2: B100) teller hvor mange verdier som allerede er angitt i kolonne B. Vi begynner å telle i B2 fordi rad 1 er kolonneoverskriften. OFFSET-funksjonen tar celle B2 (det første argumentet) som utgangspunkt, og utligner tellingen (verdien returnert av COUNT-funksjonen) ved å flytte 3 rader opp (-3 i det andre argumentet). Som resultat returnerer den summen av verdier i et område som består av 3 rader (3 i 4. argumentet) og 1 kolonne (1 i det siste argumentet), som er de siste 3 månedene vi ønsker. Endelig sendes returnert sum til AVERAGE-funksjonen for å beregne glidende gjennomsnitt. Tips. Hvis du jobber med kontinuerlig oppdaterbare regneark der nye rader vil bli lagt til i fremtiden, må du sørge for å gi et tilstrekkelig antall rader til COUNT-funksjonen for å imøtekomme potensielle nye oppføringer. Det er ikke et problem hvis du inkluderer flere rader enn det som trengs, så lenge du har den første cellen til høyre, vil COUNT-funksjonen kaste bort alle tomme rader uansett. Som du sikkert har lagt merke til, inneholder tabellen i dette eksemplet data i bare 12 måneder, og likevel leveres rekkevidde B2: B100 til COUNT, bare for å være på lagringssiden :) Eksempel 3. Få glidende gjennomsnitt for de siste N-verdiene i en rad Hvis du vil beregne et glidende gjennomsnitt for de siste N dagene, månedene, årene etc. i samme rad, kan du justere Offset-formelen på denne måten: Anta at B2 er det første nummeret på rad, og du vil ha For å inkludere de siste 3 tallene i gjennomsnittet, har formelen følgende form: Opprette et Excel-glidende gjennomsnittlig diagram Hvis du allerede har opprettet et diagram for dataene dine, legger du til en glidende gjennomsnittlig trendlinje for diagrammet i løpet av sekunder. For dette skal vi bruke Excel Trendline-funksjonen og de detaljerte trinnene følger nedenfor. I dette eksemplet har Ive opprettet en 2-D-kolonnediagram (Sett inn tab gt Charts-gruppe) for salgsdata: Og nå vil vi visualisere det bevegelige gjennomsnittet i 3 måneder. I Excel 2010 og Excel 2007 går du til Layout gt Trendline gt More Trendline Options. Tips. Hvis du ikke trenger å spesifisere detaljene, for eksempel det bevegelige gjennomsnittlige intervallet eller navnene, kan du klikke Design gt Add Chart Element gt Trendline gt Flytte gjennomsnitt for det umiddelbare resultatet. Format Trendline-panelet åpnes på høyre side av regnearket ditt i Excel 2013, og den tilsvarende dialogboksen vil dukke opp i Excel 2010 og 2007. For å finjustere din chat, kan du bytte til Fill amp Line eller Effects-fanen på Format Trendline-panelet og spill med forskjellige alternativer som linjetype, farge, bredde osv. For kraftig dataanalyse, vil du kanskje legge til noen bevegelige gjennomsnittlige trendlinjer med forskjellige tidsintervaller for å se hvordan utviklingen utvikler seg. Følgende skjermbilde viser 2-måneders (grønn) og 3-måneders (mursteinrød) bevegelige gjennomsnittlige trendlinjer: Vel, det handler om å beregne glidende gjennomsnitt i Excel. Eksempelbladet med de bevegelige gjennomsnittlige formler og trendlinje er tilgjengelig for nedlasting - Flytte gjennomsnittlig regneark. Jeg takker for at du har lest og ser frem til å se deg neste uke Du kan også være interessert i: Ditt eksempel 3 ovenfor (Flytt gjennomsnitt for de siste N-verdiene på rad) virket perfekt for meg hvis hele raden inneholder tall. Jeg gjør dette for min golf league hvor vi bruker en 4 ukers rullende gjennomsnitt. Noen ganger er golferne fraværende så i stedet for en poengsum, vil jeg sette ABS (tekst) i cellen. Jeg vil fortsatt at formelen skal se etter de siste 4 poengene og ikke telle ABS enten i telleren eller i nevnen. Hvordan endrer jeg formelen for å oppnå dette Ja, jeg la merke til om cellene var tomme, var beregningene feil. I min situasjon sporer jeg over 52 uker. Selv om de siste 52 ukene inneholdt data, var beregningen feil hvis en celle før de 52 ukene var tom. Jeg prøver å lage en formel for å få det bevegelige gjennomsnittet i 3 periode, setter pris på om du kan hjelpe pls. Dato Produktpris 1012016 A 1,00 1012016 B 5,00 1012016 C 10,00 1022016 A 1,50 1022016 B 6,00 1022016 C 11,00 1032016 A 2,00 1032016 B 15,00 1032016 C 20,00 1042016 A 4,00 1042016 B 20,00 1042016 C 40,00 1052016 A 0,50 1052016 B 3,00 1052016 C 5,00 1062016 A 1,00 1062016 B 5,00 1062016 C 10,00 1072016 A 0,50 1072016 B 4,00 1072016 C 20,00 Hei, jeg er imponert over den enorme kunnskapen og den kortfattede og effektive instruksjonen du gir. Jeg har også en spørring som jeg håper du kan låne talentet ditt med en løsning også. Jeg har en kolonne A på 50 (ukentlig) intervall datoer. Jeg har en kolonne B ved siden av det med planlagt produksjon gjennomsnittlig i uken for å fullføre målet på 700 widgets (70050). I neste kolonne summerer jeg de ukentlige trinnene mine hittil (100 for eksempel) og beregner min gjenværende antall prognose avg per gjenværende uke (ex 700-10030). Jeg vil gjerne fylle ut en graf hver uke som starter med den nåværende uken (ikke begynnelsen x-aksen i diagrammet), med summen (100) slik at mitt utgangspunkt er den nåværende uken pluss gjenværende avgweek (20), og avslutte den lineære grafen ved slutten av uken 30 og y poenget på 700. Variablene for å identifisere riktig celledato i kolonne A og slutt på mål 700 med en automatisk oppdatering fra dagens dato, forstyrrer meg. Kan du hjelpe deg med en formel (Jeg har prøvd IF logikk med I dag og bare ikke løser det.) Takk Vennligst hjelp med den riktige formelen for å beregne summen av inntatt tid på en 7 dagers flytende periode. For eksempel. Jeg trenger å vite hvor mye overtid jobber av en person over en rullende 7-dagers periode beregnet fra begynnelsen av året til slutten av året. Total arbeidstid må oppdateres for de 7 rulledagene da jeg går inn i overtidstimene daglig. Takk Er det en måte å få summen av tall for de siste 6 månedene? Jeg vil kunne beregne sum for de siste 6 månedene hver dag. Så syk trenger det å oppdatere hver dag. Jeg har et Excel-ark med kolonner hver dag for det siste året og vil etter hvert legge til flere hvert år. noen hjelp ville bli verdsatt som jeg er stumped Hei, jeg har et lignende behov. Jeg må opprette en rapport som viser nye klientbesøk, antall klientbesøk og andre data. Alle disse feltene oppdateres daglig i et regneark. Jeg må trekke dataene for de foregående 3 månedene, fordelt på måned, 3 uker etter uker og siste 60 dager. Er det en VLOOKUP eller formel eller noe jeg kan gjøre som vil koble til arket som oppdateres daglig, slik at rapporten min også kan oppdateres daglig? Husk gtgt Inventory Accounting Temaer Flytte gjennomsnittlig Inventory Method Moving Gjennomsnittlig Inventory Method Oversikt Under den bevegelige gjennomsnittlige inventarmetoden , beregnes gjennomsnittsprisen for hvert varelager på lager etter hvert kjøpskjøp. Denne metoden har en tendens til å gi lagerverdier og kostnaden for varer solgte resultater som er mellom dem som er avledet ved første metode, første ut (FIFO) og den siste i, første ut (LIFO) metoden. Denne gjennomsnittlige tilnærmingen vurderes å gi en sikker og konservativ tilnærming til rapportering av økonomiske resultater. Beregningen er den totale kostnaden for de kjøpte varene dividert med antall varer på lager. Kostnaden ved å avslutte beholdningen og kostnaden for solgte varer blir deretter satt til denne gjennomsnittlige kostnaden. Det er ikke nødvendig med kostnadslag, som kreves for FIFO - og LIFO-metodene. Siden den bevegelige gjennomsnittlige kostnaden endres når det er nytt kjøp, kan metoden bare brukes med et evigvarende oppsporingssystem. Et slikt system holder oppdaterte oversikt over beholdningsbalansen. Du kan ikke bruke den bevegelige gjennomsnittlige beholdningsmetoden hvis du bare bruker et periodisk beholdningssystem. siden et slikt system kun samler informasjon ved slutten av hver regnskapsperiode, og opprettholder ikke poster på det enkelte enhetsnivå. Også når lagerbeholdninger utledes ved hjelp av et datasystem, gjør datamaskinen det forholdsvis enkelt å kontinuerlig justere beholdningsvurdering med denne metoden. Omvendt kan det være ganske vanskelig å bruke den bevegelige gjennomsnittlige metoden når lagerregistrene blir opprettholdt manuelt, siden de ansatte vil bli overveldet av volumet av nødvendige beregninger. Moving Average Inventory Method Eksempel 1. ABC International har 1.000 grønne widgets på lager i begynnelsen av april, til en pris per enhet på 5. Dermed er begynnelsesbeholdningen for grønne widgets i april 5.000. ABC kjøper deretter 250 ekstra greeen-widgets 10. april til 6 hver (totalt kjøp på 1500), og ytterligere 750 grønne widgets 20. april til 7 hver (totalt kjøp på 5 250). I fravær av salg betyr dette at den gjennomsnittlige prisen per enhet i slutten av april vil være 5,88, som beregnes som en total kostnad på 11.750 (5.000 begynnelsesbalanse 1.500 kjøp 5.250 kjøp), fordelt på total on - håndenhetstall på 2000 grønne widgets (1000 startbalanse 250 enheter kjøpt 750 enheter kjøpt). Dermed var den bevegelige gjennomsnittskostnaden for de grønne widgets 5 per enhet i begynnelsen av måneden og 5,88 ved månedenes slutt. Vi vil gjenta eksemplet, men nå inkluderer flere salg. Husk at vi beregner det glidende gjennomsnittet etter hver transaksjon. Eksempel 2. ABC International har 1.000 grønne widgets på lager i begynnelsen av april til en pris per enhet på 5. Det selger 250 av disse enhetene 5. april og registrerer en kostnad på kostnaden for varer solgt på 1 250, beregnes som 250 enheter x 5 per enhet. Dette betyr at det nå er 750 enheter igjen på lager, til en pris per enhet på 5 og en total kostnad på 3.750. ABC kjøper deretter 250 ekstra grønne widgets 10. april til 6 hver (totalt kjøp på 1500). Den glidende gjennomsnittskostnaden er nå 5,25, som beregnes som en total kostnad på 5 250 divisjoner med de 1000 enhetene som fortsatt er til stede. ABC selger deretter 200 enheter 12. april og registrerer et gebyr til kostnaden for varer solgt på 1 050, som beregnes som 200 enheter x 5,25 per enhet. Det betyr at det nå er 800 enheter igjen på lager, til en pris per enhet på 5,25 og en total kostnad på 4.200. Endelig kjøper ABC ytterligere 750 grønne widgets 20. april til 7 hver (totalt kjøp på 5.250). Ved utgangen av måneden er den gjennomsnittlige prisen per enhet 6,10, som beregnes som totale kostnader på 4.200 5 250 fordelt på total gjenværende enheter på 800 750. I det andre eksempelet begynner ABC International måneden med 5.000 begynnende saldo på grønne widgets til en pris på 5 hver, selger 250 enheter til en pris av 5 den 5. april, reviderer enhetskostnaden til 5,25 etter et kjøp den 10. april, selger 200 enheter til en kostnad på 5,25 den 12. april og Endelig reviderer enhetskostnaden til 6,10 etter et kjøp 20. april. Du kan se at kostnaden per enhet endres etter et lageroppkjøp, men ikke etter et varelager.
No comments:
Post a Comment