29 september 2013 Flytte gjennomsnitt ved konvolusjon Hva er glidende gjennomsnitt og hva er det bra for Hvordan flytter gjennomsnittet gjort ved å bruke convolution Flytte gjennomsnitt er en enkel operasjon som vanligvis brukes til å undertrykke støy av et signal: vi setter verdien av hvert punkt til gjennomsnitt av verdiene i nabolaget. Med en formel: Her er x inngangen, og y er utgangssignalet, mens størrelsen på vinduet er w, skulle være merkelig. Formelen ovenfor beskriver en symmetrisk operasjon: prøvene tas fra begge sider av det aktuelle punktet. Nedenfor er et virkelighetseksempel. Det punktet som vinduet ligger faktisk er rødt. Verdier utenfor x skal være nuller: For å spille rundt og se effekten av glidende gjennomsnitt, ta en titt på denne interaktive demonstrasjonen. Slik gjøres det ved konvolusjon Som du kanskje har gjenkjent, beregner det enkle glidende gjennomsnittet likningen: i begge tilfeller skyves et vindu langs signalet og elementene i vinduet oppsummeres. Så, prøv å gjøre det samme ved å bruke konvolusjon. Bruk følgende parametre: Ønsket utgang er: Som første tilnærming, la oss prøve det vi får ved å samle x-signalet med følgende k-kjerne: Utgangen er nøyaktig tre ganger større enn den forventede. Det kan også ses at utgangsvurderingene er oppsummeringen av de tre elementene i vinduet. Det er fordi under konvolusjonen glir vinduet sammen, alle elementene i det blir multiplisert med en og deretter oppsummert: yk 1 cdot x 1 cdot x 1 cdot x For å få de ønskede verdiene for y. Utgangen skal deles med 3: Ved en formel som inkluderer divisjonen: Men ville det ikke være optimal å gjøre avdelingen under konvolusjonen. Her kommer ideen ved å omplassere ligningen: Så vi skal bruke følgende k-kjerne: På denne måten vil vi få ønsket utdata: Generelt: hvis vi ønsker å gjøre bevegelige gjennomsnitt ved konvolusjon som har en vindusstørrelse på w. vi skal bruke følgende k-kjerne: En enkel funksjon som gjør det bevegelige gjennomsnittet er: Et eksempelbruk er: Ved hjelp av MATLAB, hvordan kan jeg finne tre-dagers glidende gjennomsnitt av en bestemt kolonne i en matrise og legge til glidende gjennomsnitt i den matrisen Jeg prøver å beregne 3-dagers glidende gjennomsnitt fra bunn til toppen av matrisen. Jeg har oppgitt koden min: Gitt følgende matrise a og maske: Jeg har prøvd å implementere conv kommandoen, men jeg mottar en feil. Her er conv kommandoen jeg har prøvd å bruke på 2. kolonne av matrise a: Utgangen jeg ønsker er gitt i følgende matrise: Hvis du har noen forslag, vil jeg sette stor pris på det. Takk for kolonne 2 i matrisen a, beregner jeg 3-dagers glidende gjennomsnitt som følger og plasserer resultatet i kolonne 4 i matrise a (jeg omdøpt matrise a som 39desiredOutput39 bare for illustrasjon). 3-dagers gjennomsnittet av 17, 14, 11 er 14 det 3-dagers gjennomsnittet på 14, 11, 8 er 11 3-dagers gjennomsnittet av 11, 8, 5 er 8 og 3-dagers gjennomsnittet på 8, 5, 2 er 5. Det er ingen verdi i de nederste 2 radene for fjerde kolonne fordi beregningen for 3-dagers glidende gjennomsnitt begynner nederst. Den 39 ugyldige 39-utgangen vil ikke bli vist før minst 17, 14 og 11. Forhåpentligvis er dette fornuftig ndash Aaron 12. juni kl 13:28 Generelt vil det hjelpe hvis du vil vise feilen. I dette tilfellet gjør du to ting feil: Først må fellingen din divideres med tre (eller lengden på det bevegelige gjennomsnittet). For det andre, merk størrelsen på c. Du kan ikke bare passe inn i en. Den typiske måten å få et bevegelige gjennomsnitt på, ville være å bruke samme: men det ser ikke ut som du vil. I stedet er du tvunget til å bruke et par linjer: Jeg må beregne et glidende gjennomsnitt over en dataserie, innenfor en forløp. Jeg må få glidende gjennomsnitt over N9 dager. Array Im computing in er 4 serier av 365 verdier (M), som i seg selv er gjennomsnittsverdier for et annet sett med data. Jeg vil plotte gjennomsnittverdiene av dataene mine med det bevegelige gjennomsnittet i en tomt. Jeg googled litt om å flytte gjennomsnitt og conv kommandoen og fant noe som jeg prøvde å implementere i min kode .: Så i utgangspunktet beregner jeg mitt gjennomsnitt og plotter det med et (feil) glidende gjennomsnitt. Jeg plukket wts verdien rett utenfor mathworks nettstedet, så det er feil. (kilde: mathworks. nlhelpeconmoving-average-trend-estimation. html) Mitt problem er imidlertid at jeg ikke forstår hva dette wts er. Kan noen forklare om det har noe å gjøre med verdiene i vektene: det er ugyldig i dette tilfellet. Alle verdier er vektet det samme. Og hvis jeg gjør dette helt feil, kan jeg få litt hjelp med det Min oppriktige takk. spurte 23 september klokken 19:05 Bruk av conv er en utmerket måte å implementere et bevegelig gjennomsnitt på. I koden du bruker, er wts hvor mye du veier hver verdi (som du gjettet). summen av den vektoren skal alltid være lik en. Hvis du vil vektere hver verdi jevnt og gjøre et N-bevegelig filter, så vil du gjøre det. Ved å bruke det gyldige argumentet i conv, vil det føre til at du har færre verdier i Ms enn du har i M. Bruk det samme hvis du ikke har noe imot effekten av null polstring. Hvis du har signalbehandlingsverktøyskassen, kan du bruke cconv hvis du vil prøve et sirkulært glidende gjennomsnitt. Noe som Du burde lese conv and cconv dokumentasjonen for mer informasjon hvis du ikke allerede har. Du kan bruke filter til å finne et løpende gjennomsnitt uten å bruke en forløkke. Dette eksemplet finner det løpende gjennomsnittet av en 16-elementvektor, ved hjelp av en vindustørrelse på 5. 2) Glatt som en del av kurvefiksjonsverktøyskassen (som er tilgjengelig i de fleste tilfeller) glatter du (y) dataene i kolonnevektoren y bruker et glidende gjennomsnittsfilter. Resultatene returneres i kolonnevektoren. Standard spenningen for det bevegelige gjennomsnittet er 5.Download movAv. m (se også movAv2 - en oppdatert versjon som tillater vekting) Beskrivelse Matlab inkluderer funksjoner som kalles movavg og tsmovavg (tidsserie-flytende gjennomsnitt) i Financial Toolbox, movAv er utformet for å replikere den grunnleggende funksjonaliteten til disse. Koden her gir et godt eksempel på å administrere indekser i looper, som kan være forvirrende til å begynne med. Jeg har bevisst holdt koden kort og enkel å holde denne prosessen klar. movAv utfører et enkelt glidende gjennomsnitt som kan brukes til å gjenopprette støyende data i noen situasjoner. Det fungerer ved å ta et middel av inngangen (y) over et glidende tidvindu, hvis størrelse er spesifisert av n. Jo større n er, desto større er utjevningen av effekten av n i forhold til lengden på inngangsvektoren y. og effektivt (vel slags) skaper et lavpassfrekvensfilter - se avsnittet om eksempler og overveier. Fordi mengden av utjevning som tilbys av hver verdi av n er i forhold til lengden på inngangsvektoren, er den alltid verdt å teste forskjellige verdier for å se hva som passer. Husk også at n poeng går tapt på hvert gjennomsnitt hvis n er 100, inneholder de første 99 punktene i inngangsvektoren ikke nok data for et gjennomsnitt på 100pt. Dette kan unngås noe ved å stable gjennomsnitt, for eksempel, koden og grafen nedenfor, sammenligner en rekke vinduer med gjennomsnittlig lengde. Legg merke til hvor glatt 1010pt er sammenlignet med et enkelt 20pt gjennomsnitt. I begge tilfeller går 20 poeng i tap totalt. Opprett xaxis x1: 0.01: 5 Generer støystøyReps 4 støy repmat (randn (1, ceil (numel (x) noiseReps)), noiseReps, 1) støy reshape (støy, 1, lengde (støy) noiseReps) Generer ydata støy yexp x) 10noise (1: lengde (x)) Gjennomsnittlig gjennomsnitt: y2 movAv (y, 10) 10 pt y3 movAv (y2, 10) 1010 pt y4 movAv (y, 20) 20 pt y5 movAv (y, 40) 40 pt y6 movAv (y, 100) 100 pt Plot-figurplot (x, y, y2, y3, y4, y5, y6) legenden (Rå data, 10pt glidende gjennomsnitt, 1010pt, 20pt, 40pt, 100pt) xlabel (x) ylabel y) tittel (Sammenligning av bevegelige gjennomsnittsverdier) movAv. m-kode gjennomgående funksjonsutgang movAv (y, n) Den første linjen definerer funksjonsnavn, innganger og utganger. Inngangen x skal være en vektor med data for å utføre gjennomsnittet, n skal være antall poeng som skal utføre gjennomsnittet over utgang vil inneholde gjennomsnittlig data returnert av funksjonen. Preallocate output outputNaN (1, numel (y)) Finn midtpunkt for n midPoint runde (n2) Hovedarbeidet av funksjonen er gjort i forløp, men før du starter, blir to ting forberedt. For det første er produksjonen forhåndsallokert som NaNs, dette tjente to formål. For det første er forallokering generelt god praksis, da det reduserer minnesjonglingen Matlab må gjøre, for det andre gjør det veldig enkelt å sette de gjennomsnittlige dataene i en utgang i samme størrelse som inngangsvektoren. Dette betyr at den samme xaxis kan brukes senere for begge, noe som er praktisk for plotting, alternativt kan NaNs fjernes senere i en linje med kode (utdatautgang (Den variable midpoint vil bli brukt til å justere dataene i utgangsvektoren. n 10, vil 10 poeng gå tapt fordi for de første 9 poengene til inngangsvektoren er det ikke nok data til å ta et 10-punkts gjennomsnitt. Da utgangen vil bli kortere enn inngangen, må den justeres riktig. bli brukt, slik at en lik mengde data går tapt ved start og slutt, og inngangen holdes justert med utgangen av NaN buffere opprettet ved preallokering av utgang. For en 1: lengde (y) - n Finn indeksområdet for å ta gjennomsnitt over (a: b) forbud Beregn gjennomsnittlig utgang (amidPoint) gjennomsnittlig (y (a: b)) ende I selve for-linjen blir et gjennomsnitt tatt over hvert påfølgende segment av inngangen. Sløyfen løper for a. definert som 1 opp til lengden på inngangen (y), minus dataene som vil gå tapt (n). Hvis inngangen er 100 poeng lo ng og n er 10, vil løkken løpe fra (a) 1 til 90. Dette betyr at den første indeksen til segmentet blir gjennomsnittlig. Den andre indeksen (b) er ganske enkelt an-1. Så på den første iterasjonen, a1. n10. så b 11-1 10. Det første gjennomsnittet er tatt over y (a: b). eller x (1:10). Gjennomsnittet for dette segmentet, som er en enkelt verdi, lagres i produksjonen på indeksen amidPoint. eller 156. På den andre iterasjonen, a2. b 210-1 11. så er gjennomsnittet tatt over x (2:11) og lagret i utgang (7). På den siste iterasjonen av løkken for en inngang på lengde 100, a91. b 9010-1 100, slik at gjennomsnittet blir tatt over x (91: 100) og lagret i utgang (95). Dette etterlater produksjonen med totalt n (10) NaN-verdier ved indeks (1: 5) og (96: 100). Eksempler og overveier Flytte gjennomsnitt er nyttige i noen situasjoner, men de er ikke alltid det beste valget. Her er to eksempler hvor de ikke nødvendigvis er optimale. Mikrofonkalibrering Dette datasettet representerer nivåene av hver frekvens produsert av en høyttaler og registrert av en mikrofon med en kjent lineær respons. Høyttalerenes utgang varierer med frekvens, men vi kan korrigere for denne variasjonen med kalibreringsdataene. Utgangen kan justeres på nivå for å ta hensyn til svingningene i kalibreringen. Legg merke til at rådataene er støyende - det betyr at en liten endring i frekvens ser ut til å kreve en stor, uregelmessig, endring i nivå for å ta hensyn til. Er dette realistisk eller er dette et produkt av opptaksmiljøet. Det er i dette tilfellet rimelig å bruke et glidende gjennomsnitt som jevner ut nivåfrekvenskurven for å gi en kalibreringskurve som er litt mindre uregelmessig. Men hvorfor er dette ikke det beste i dette eksemplet Flere data ville være bedre - flere kalibreringer går i gjennomsnitt sammen vil ødelegge støyen i systemet (så lenge det er tilfeldig) og gi en kurve med mindre subtile detaljer tapt. Det bevegelige gjennomsnittet kan kun omtrentliggjøre dette, og kan fjerne noen høyere frekvensdips og topper fra kurven som virkelig eksisterer. Sinbølger Ved å bruke et glidende gjennomsnitt på sinusbølger fremheves to poeng: Det generelle spørsmålet om å velge et rimelig antall poeng for å utføre gjennomsnittet over. Det er enkelt, men det er mer effektive metoder for signalanalyse enn gjennomsnittlig oscillerende signaler i tidsdomene. I denne grafen er den opprinnelige sinusbølgen plottet i blått. Støy er lagt til og tegnet som oransje kurven. Et glidende gjennomsnitt utføres på forskjellige antall punkter for å se om den opprinnelige bølgen kan gjenvinnes. 5 og 10 poeng gir rimelige resultater, men fjerner ikke støyen helt, hvor like større antall poeng begynner å miste amplitudedetalj som gjennomsnittet strekker seg over forskjellige faser (husk at bølgen oscillerer rundt null og mener (-1 1) 0) . En alternativ tilnærming ville være å konstruere et lavpassfilter enn det som kan påføres signalet i frekvensdomenet. Jeg kommer ikke til å gå i detalj som det går ut over omfanget av denne artikkelen, men da støyen er betydelig høyere frekvens enn bølgenees grunnfrekvens, ville det være ganske enkelt i dette tilfellet å konstruere et lavpassfilter enn å fjerne høyfrekvensen bråk.
No comments:
Post a Comment